Leaf‐density estimation for fruit‐tree canopy based on wind‐excited audio

Author:

Li Wenwei123,Jiang Shijie14,Yang Shenghui1,Feng Han1,Liu Weihong1ORCID,Zheng Yongjun123,Tan Yu1,Su Daobilige1ORCID

Affiliation:

1. College of Engineering China Agricultural University Beijing China

2. State Key Laboratory of Intelligent Agricultural Power Equipment Beijing China

3. The Ministry of Education Engineering Research Center of Modern Agricultural Equipment and Facilities Beijing China

4. College of Agricultural Equipment Engineering Henan University of Science and Technology Luoyang China

Abstract

AbstractIt is important to obtain real‐time leaf density of fruit‐tree canopies for the precision spray control of plant‐protection robots. However, conventional detection techniques for the characteristics of fruit‐tree canopies cannot acquire the canopy internal information, which may provide an unsatisfactory accuracy of detection of leaf densities. This paper proposes a method for estimating canopy leaf density of fruit trees based on wind‐excited audio. A wind‐exciting implement was used to force fruit‐tree canopy leaves vibrating to produce audio. Then, some correlation analysis methods were used to extract key characteristic parameters of wind‐excited audio that were significantly correlated with leaf density. Finally, based on the data set of wind‐excited audio, a few machine‐learning methods were used to develop leaf‐density estimation models. Test results showed that: (1) there were five key feature parameters of wind‐excited audio that were significantly correlated with leaf density: the short‐time energy, spectral centroid, the frequency average energy, the peak frequency, and the standard deviation of frequency. (2) the estimation model of leaf density developed based on backpropagation neural network for fruit‐tree canopy showed the optimal estimation results, which can achieve the estimation of leaf density of fruit‐tree canopies accurately. The overall correlation coefficient (R) of the estimation model was more than 0.84, the root‐mean‐square error was less than 0.73 m2 m−3, and the mean absolute error was less than 0.53 m2 m−3. This study is expected to provide a technical solution for the leaf‐density detection of fruit‐tree canopies of plant‐protection robots.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3