Implementation of PID controller and enhanced red deer algorithm in optimal path planning of substation inspection robots

Author:

Tang Zhuozhen12,Xue Bin3,Ma Hongzhong1,Rad Ahmad4

Affiliation:

1. College of Energy and Electrical Engineering Hohai University Nanjing China

2. Nanjing Running Technology Co., Ltd. Nanjing China

3. State Grid Jiangsu Electric Power Co., Ltd. Nanjing China

4. School of Mechatronic Systems Engineering Simon Fraser University Burnaby Canada

Abstract

AbstractIn contemporary power transmission systems, substation monitoring stands as a vital but challenging task. While robotics offers promise in this regard, its potential is still nascent, struggling to replicate human intelligence. This article's core aim was to optimize robot path planning (RPP). Employing the enhanced red deer algorithm (ERDA), we sought to bolster RPP for more efficient substation inspections. The key methods used seem to be modeling, experimentation, comparative analysis, and some elements of data benchmarking to systematically evaluate and validate their proposed technique and models both in simulation and the real world. Research aims to enhance substation inspection effectiveness and bolster the safety of power usage in society. Proposed hybrid approach, combining proportional–integral–derivative (PID) with ERDA (PID–ERDA), underpins an Intelligent Intelligent RPP framework tailored to substation inspections. Examining the PID–ERDA model's performance, it significantly improved path length by 18%–29% and reduced response times by 14%–26% compared with PID or ERDA alone. PID–ERDA consistently achieved optimal solutions in 40–60 trials out of 85, while PID and ERDA managed 20–40 trials with inconsistent optimization. Additionally, it reduced average response times to 17–20 s from 21 to 27 s observed when using PID and ERDA separately. PID–ERDA also demonstrated superior path accuracy, surpassing methods like improved adaptive control algorithm‐feedforward neural network, enhanced unified algorithm‐susceptible‐infected‐removed, and bounded behavior‐particle swarm optimization by 7%–13%. The study affirms that the PID–ERDA model significantly enhances path planning for substation inspections, representing a milestone in RPP for power station inspections within modern power transmission systems. The primary contribution of this research is the significant improvement it brings to RPP for power station inspections, especially in substation monitoring within modern power transmission systems.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3