Lithium Salt Combining Fluoroethylene Carbonate Initiates Methyl Methacrylate Polymerization Enabling Dendrite‐Free Solid‐State Lithium Metal Battery

Author:

Ye Xue1,Liang Jianneng2,Du Baorong2,Li Yongliang2,Ren Xiangzhong2,Wu Dazhuan1,Ouyang Xiaoping1,Zhang Qianling2ORCID,Liu Jianhong2

Affiliation:

1. Institute of Process Equipment, College of Energy Engineering Zhejiang University Hangzhou 310000 China

2. Graphene Composite Research Center, College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518061 China

Abstract

This work demonstrates a novel polymerization‐derived polymer electrolyte consisting of methyl methacrylate, lithium bis(trifluoromethanesulfonyl)imide and fluoroethylene carbonate. The polymerization of MMA was initiated by the amino compounds following an anionic catalytic mechanism. LiTFSI plays both roles including the initiator and Li ion source in the polymer electrolyte. Normally, lithium bis(trifluoromethanesulfonyl)imide has difficulty in initiating the polymerization reaction of methyl methacrylate monomer, a very high concentration of lithium bis(trifluoromethanesulfonyl)imide is needed for initiating the polymerization. However, the fluoroethylene carbonate additive can work as a supporter to facilitate the degree of dissociation of lithium bis(trifluoromethanesulfonyl)imide and increase its initiator capacity due to the high dielectric constant. The as‐prepared poly‐methyl methacrylate‐based polymer electrolyte has a high ionic conductivity (1.19 × 10−3 S cm−1), a wide electrochemical stability window (5 V vs Li+/Li), and a high Li ion transference number () of 0.74 at room temperature (RT). Moreover, this polymerization‐derived polymer electrolyte can effectively work as an artificial protective layer on Li metal anode, which enabled the Li symmetric cell to achieve a long‐term cycling performance at 0.2 mAh cm−2 for 2800 h. The LiFePO4 battery with polymerization‐derived polymer electrolyte‐modified Li metal anode shows a capacity retention of 91.17% after 800 cycles at 0.5 C. This work provides a facile and accessible approach to manufacturing poly‐methyl methacrylate‐based polymerization‐derived polymer electrolyte and shows great potential as an interphase in Li metal batteries.

Funder

Shenzhen Fundamental Research Program

National Basic Research Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3