Affiliation:
1. Department of Materials Science and Engineering Chungnam National University Daejeon 34134 South Korea
2. School of Materials Science and Engineering University of Ulsan Ulsan 44776 South Korea
3. Department of Energy and Materials Engineering Dongguk University Seoul 04620 South Korea
Abstract
Developing anode materials with high specific capacity and cycling stability is vital for improving thin‐film lithium‐ion batteries. Thin‐film zinc oxide (ZnO) holds promise due to its high specific capacity, but it suffers from volume changes and structural stress during cycling, leading to poor battery performance. In this research, we ingeniously combined polytetrafluoroethylene (PTFE) with ZnO using a radio frequency (RF) magnetron co‐sputtering method, ensuring a strong bond in the thin‐film composite electrode. PTFE effectively reduced stress on the active material and mitigated volume change effects during Li+ ion intercalation and deintercalation. The composite thin films are thoroughly characterized using advanced techniques such as X‐ray diffraction, scanning electron microscopy, and X‐ray photoelectron spectroscopy for investigating correlations between material properties and electrochemical behaviors. Notably, the ZnO/PTFE thin‐film electrode demonstrated an impressive specific capacity of 1305 mAh g−1 (=7116 mAh cm−3) at a 0.5C rate and a remarkable capacity retention of 82% from the 1st to the 100th cycle, surpassing the bare ZnO thin film (50%). This study provides valuable insights into using binders to stabilize active materials in thin‐film batteries, enhancing battery performance.
Funder
Ministry of Science and ICT, South Korea
National NanoFab Center
Ministry of Education
Korea Evaluation Institute of Industrial Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献