Affiliation:
1. Smart Materials and Advanced Structure Laboratory, School of Mechanical Engineering and Mechanics Ningbo University Ningbo Zhejiang 315211 China
2. CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
3. Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine Beihang University Beijing 100191 China
Abstract
The rapid development of stretchable electronics made by circuits, microchips, and encapsulation elastomers has caused the production of a large amount of electronic waste (e‐waste). The degradation of elastomers can highly minimize the negative effects of e‐wastes. However, chemicals that included acid, alkali, and organics were repeatedly used during the recycling process, which were environmentally unfriendly. Here, a water‐modulation‐degradation‐reconstruction (WDR) polyvinylpyrrolidone (PVP)‐honey composite (PHC) polymer‐gel was developed and could be regarded as encapsulation elastomers to realize a fully recyclable water‐degradable stretchable (WS) electronics with multi‐functions. The stretchability of the PHC polymer‐gel could be modulated by the change of its water retention. The Chip‐integrated liquid metal (LM) circuits encapsulated with the modulated PHC encapsulation elastomer could withstand a strain value of ~3000%. Moreover, we developed a WS biomedical sensor composed of PHC encapsulation elastomer, LM circuits, and microchips, which could be fully recycled by biodegrading it in water to reconstruct a new one. As before, the reconstructed WS biomedical sensor could still simultaneously realize the combination of ultra‐stretchability, recycling, self‐healing, self‐adhesive, and self‐conformal abilities. The results revealed that this study exercises a profound influence on the rational design of multi‐functional WS electronics.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Ningbo
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献