Li‐Rich Organosulfur Cathode with Boosted Kinetics for High‐Energy Lithium‐Sulfur Batteries

Author:

Ma Ting12,Deng Jiaojiao3,Lin Yuxiao4,Liang Qinghua5,Hu Liang6,Wang Xiaohu2,Liu Jun2,Zhao Xinsheng4,Li Yinwei4,Nan Ding12ORCID,Yu Xiaoliang6ORCID

Affiliation:

1. College of Chemistry and Chemical Engineering Inner Mongolia University Hohhot 010021 China

2. Inner Mongolia Key Laboratory of Graphite and Graphene for Energy Storage and Coating, School of Materials Science and Engineering Inner Mongolia University of Technology Hohhot 010051 China

3. Shenzhen Key Laboratory on Power Battery Safety and Shenzhen Geim Graphene Center Tsinghua Shenzhen International Graduate School (SIGS) Shenzhen 518071 China

4. School of Physics and Electronic Engineering Jiangsu Normal University Xuzhou Jiangsu Province China 221116

5. Key Laboratory of Rare Earth, Ganjiang Innovation Academy Chinese Academy of Sciences Ganzhou Jiangxi 341000 China

6. Department of Mechanical Engineering, Research Institute for Smart Energy The Hong Kong Polytechnic University Hong Kong China

Abstract

Organosulfur materials containing sulfur–sulfur bonds are an emerging class of high‐capacity cathodes for lithium storage. However, it remains a great challenge to achieve rapid conversion reaction kinetics at practical testing conditions of high cathode mass loading and low electrolyte utilization. In this study, a Li‐rich pyrolyzed polyacrylonitrile/selenium disulfide (pPAN/Se2S3) composite cathode is synthesized by deep lithiation to address the above challenges. The Li‐rich molecular structure significantly boosts the lithium storage kinetics by accelerating lithium diffusivity and improving electronic conductivity. Even under practical test conditions requiring a lean electrolyte (Electrolyte/sulfur ratio of 4.1 μL mg−1) and high loading (7 mg cm−2 of pPAN/Se2S3), DL‐pPAN/Se2S3 exhibits a specific capacity of 558 mAh g−1, maintaining 484 mAh g−1 at the 100th cycle with an average Coulombic efficiency of near 100%. Moreover, it provides (electro)chemically stable Li resources to offset Li consumption over charge–discharge cycles. As a result the as‐fabricated anode‐free cell shows a superior cycling stability with 90% retention of the initial capacity over 45 cycles. This study provides a novel approach for fabricating high‐energy and stable Li–SPAN cells.

Funder

Hong Kong Polytechnic University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3