Design Principles for High‐Performance Meta‐Polybenzimidazole Membranes for Vanadium Redox Flow Batteries

Author:

Duburg Jacobus C.1ORCID,Avaro Jonathan23ORCID,Krupnik Leonard24ORCID,Silva Bruno F.B.235ORCID,Neels Antonia24ORCID,Schmidt Thomas J.16ORCID,Gubler Lorenz1ORCID

Affiliation:

1. Center for Energy and Environmental Sciences Paul Scherrer Institut Forschungsstrasse 111 Villigen PSI 5232 Switzerland

2. Empa, Swiss Federal Laboratories for Materials Science and Technology, Center for X‐ray Analytics Lerchenfeldstrasse 5 9014 St. Gallen Switzerland

3. Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles Lerchenfeldstrasse 5 9014 St. Gallen Switzerland

4. Department of Chemistry University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland

5. Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biointerfaces Lerchenfeldstrasse 5 9014 St. Gallen Switzerland

6. Institute of Molecular Physical Science, ETH Zurich 8093 Zurich Switzerland

Abstract

The all‐vanadium redox flow battery (VRFB) plays an important role in the energy transition toward renewable technologies by providing grid‐scale energy storage. Their deployment, however, is limited by the lack of membranes that provide both a high energy efficiency and capacity retention. Typically, the improvement of the battery's energy efficiency comes at the cost of its capacity retention. Herein, novel N‐alkylated and N‐benzylated meta‐polybenzimidazole (m‐PBI) membranes are used to understand the molecular requirements of the polymer electrolyte in a vanadium redox flow battery, providing an important toolbox for future research toward next‐generation membrane materials in energy storage devices. The addition of an ethyl side chain to the m‐PBI backbone increases its affinity toward the acidic electrolyte, thereby increasing its ionic conductivity and the corresponding energy efficiency of the VRFB cell from 70% to 78% at a current density of 200 mA cm−2. In addition, cells equipped with ethylated m‐PBI showed better capacity retention than their pristine counterpart, respectively 91% versus 87%, over 200 cycles at 200 mA cm−2. The outstanding VRFB cycling performance, together with the low‐cost and fluorine‐free chemistry of the N‐alkylated m‐PBI polymer, makes this material a promising membrane to be used in next‐generation VRFB systems.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3