Enhanced Structure/Interfacial Properties of Single‐Crystal Ni‐Rich LiNi0.92Co0.04Mn0.04O2 Cathodes Synthesized Via LiCl‐NaCl Molten‐Salt Method

Author:

Yoo Ye‐Wan1,Kang Chea‐Yun1,Kim Hyun‐Kyung1,Lee Jong‐Kyu1,Kumar Ramachandran Vasant2,Kim Kyong‐Nam3,Yoon Jung‐Rag4,Lee Seung‐Hwan1ORCID

Affiliation:

1. Department of Battery Convergence Engineering Kangwon National University Chuncheon 24341 Korea

2. Department of Materials Science and Metallurgy University of Cambridge Cambridge CB2 1TN UK

3. Department of Semiconductor Engineering Daejeon University Daejeon 34520 Korea

4. R&D Center, Samwha Capacitor Yongin 449‐884 Korea

Abstract

Arising from the increasing demand for electric vehicles (EVs), Ni‐rich LiNixCoyMnzO2 (NCM, x + y + z = 1, x ≥ 0.8) cathode with greatly increased energy density are being researched and commercialized for lithium‐ion batteries (LIBs). However, parasitic crack formation during the discharge–charge cycling process remains as a major degradation mechanism. Cracking leads to increase in the specific surface area, loss of electrical contact between the primary particles, and facilitates liquid electrolyte infiltration into the cathode active material, accelerating capacity fading and decrease in lifetime. In contrast, Ni‐rich NCM when used as a single crystal exhibits superior cycling performances due to its rigid mechanical property that resists cracking during long charge–discharge process even under harsh conditions. In this paper, we present comparative investigation between single crystal Ni‐rich LiNi0.92Co0.04Mn0.04O2 (SC) and polycrystalline Ni‐rich LiNi0.92Co0.04Mn0.04O2 (PC). The relatively improved cycling performances of SC are attributed to smaller anisotropic volume change, higher reversibility of phase transition, and resistance to crack formation. The superior properties of SC are demonstrated by in situ characterization and battery tests. Consequently, it is inferred from the results obtained that optimization of preparation conditions can be regarded as a key approach to obtain well crystallized and superior electrochemical performances.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3