Improving seasonal prediction of summer rainfall over southern China using the BCC_CSM1.1m model‐circulation increment‐based dynamic statistical technique

Author:

Zhou Fang1ORCID,Han Weiming1,Zhang Dapeng1,Cao Rong2

Affiliation:

1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory of Meteorological Disaster, Ministry of Education, Joint International Research Laboratory of Climate and Environment Change Nanjing University of Information Science and Technology Nanjing China

2. Fujian Climate Center, Fujian Province Meteorological Administration Fuzhou China

Abstract

AbstractA model‐circulation increment‐based dynamic statistical technique (MIDST) is proposed in this paper to improve the prediction of summer rainfall over southern China (SC) where quite low prediction skills have been found in the Beijing Climate Center Climate System Model version 1.1 with a moderate resolution (BCC_CSM1.1m). The results show that BCC_CSM1.1m can hardly represent the variability of the summer rainfall anomaly and its year‐to‐year increment over SC, and the skillful predictions are mostly confined over the middle reaches of the Yangtze River. Using the dynamic model output and statistical method, the MIDST is established to capture the coupled modes between the year‐to‐year increments of the summer rainfall anomaly and the associated simultaneous three‐dimensional coupled air‐sea circulation predictors. The cross‐validation indicates that the prediction skills of the MIDST are evidently improved for both the summer rainfall increment prediction and summer rainfall anomaly prediction compared with the direct BCC_CSM1.1m prediction. The skillful prediction can persist for long forecast leads over most regions except southwestern China. As the major predictability source of seasonal prediction, the intense response to changes in the circulation related to the El Niño‐Southern Oscillation (ENSO) is well captured, and thus, the performance improvement of the MIDST is primarily due to its more realistic representation of the incremental circulation related to the ENSO.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Atmospheric Science

Reference61 articles.

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3