Nondestructive detection of water status and distribution in corn kernels during hot air drying using multispectral imaging

Author:

Ren Lin1,Liu Wei2,Liu Changhong1ORCID,Zheng Lei1

Affiliation:

1. Engineering Research Center of Bio‐Process, Ministry of Education, School of Food and Biological Engineering Hefei University of Technology Hefei China

2. Intelligent Control and Compute Vision Lab Hefei University Hefei China

Abstract

AbstractBACKGROUNDThe characteristics of corn kernels are strongly connected with the content of three statuses of water: bound water, immobilized water, and free water. Monitoring different water contents is very important to optimize the drying process, improve corn quality, and reduce energy consumption. The feasibility of nondestructive detection of water status and its distribution in corn kernels during the hot‐air drying process using multispectral imaging was investigated.RESULTSThe chemometric methods used to develop prediction models were back propagation neural network, least‐squares support vector machine, and partial least squares. The back propagation neural network achieved the best prediction performance for total and free water contents, with correlation coefficient of prediction (Rp) of 0.9717 and 0.9782 respectively, root‐mean‐square error of prediction (RMSEP) of 4.48% and 2.54% respectively, and ratio of prediction to deviation (RPD) of 4.87 and 4.29 respectively. And partial least squares was better for the prediction of immobilized and bound water contents, with Rp of 0.9612 and 0.9798 respectively, RMSEP of 0.57% and 0.06% respectively, and RPD of 4.78 and 4.42 respectively.CONCLUSIONIt could be concluded that multispectral imaging combined with chemometric methods would be a promising technique for rapid and nondestructive detection of water status and its distribution in corn kernels. © 2023 Society of Chemical Industry.

Funder

Hefei University of Technology

Publisher

Wiley

Subject

Nutrition and Dietetics,Agronomy and Crop Science,Food Science,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3