Statistical methods for predicting e‐cigarette use events based on beat‐to‐beat interval (BBI) data collected from wearable devices

Author:

Yang James J.1ORCID,Piper Megan E.2,Indic Premananda3,Buu Anne4

Affiliation:

1. Department of Biostatistics and Data Science University of Texas Health Science Center at Houston Houston Texas USA

2. Center for Tobacco Research and Intervention, Department of Medicine University of Wisconsin, Madison Madison Wisconsin USA

3. Department of Electrical Engineering University of Texas at Tyler, Tyler Tyler Texas USA

4. Department of Health Promotion and Behavioral Sciences University of Texas Health Science Center at Houston Houston Texas USA

Abstract

The prevalence of e‐cigarette use among young adults in the USA is high (14%). Although the majority of users plan to quit vaping, the motivation to make a quit attempt is low and available support during a quit attempt is limited. Using wearable sensors to collect physiological data (eg, heart rate) holds promise for capturing the right timing to deliver intervention messages. This study aims to fill the current knowledge gap by proposing statistical methods to (1) de‐noise beat‐to‐beat interval (BBI) data from smartwatches worn by 12 young adult regular e‐cigarette users for 7 days; and (2) summarize the de‐noised data by event and control segments. We also conducted a comprehensive review of conventional methods for summarizing heart rate variability (HRV) and compared their performance with the proposed method. The results show that the proposed singular spectrum analysis (SSA) can effectively de‐noise the highly variable BBI data, as well as quantify the proportion of total variation extracted. Compared to existing HRV methods, the proposed second order polynomial model yields the highest area under the curve (AUC) value of 0.76 and offers better interpretability. The findings also indicate that the average heart rate before vaping is higher and there is an increasing trend in the heart rate before the vaping event. Importantly, the development of increasing heart rate observed in this study implies that there may be time to intervene as this physiological signal emerges. This finding, if replicated in a larger scale study, may inform optimal timings for delivering messages in future intervention.

Funder

National Institutes of Health

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3