Principal stratification for quantile causal effects under partial compliance

Author:

Sun Shuo12ORCID,Nešlehová Johanna G.3,Moodie Erica E. M.2ORCID

Affiliation:

1. Department of Biostatistics Harvard T.H. Chan School of Public Health Boston Massachusetts USA

2. Department of Epidemiology and Biostatistics McGill University Montréal Québec Canada

3. Department of Mathematics and Statistics McGill University Montréal, Québec Canada

Abstract

Within the principal stratification framework in causal inference, the majority of the literature has focused on binary compliance with an intervention and modelling means. Yet in some research areas, compliance is partial, and research questions—and hence analyses—are concerned with causal effects on (possibly high) quantiles rather than on shifts in average outcomes. Modelling partial compliance is challenging because it can suffer from lack of identifiability. We develop an approach to estimate quantile causal effects within a principal stratification framework, where principal strata are defined by the bivariate vector of (partial) compliance to the two levels of a binary intervention. We propose a conditional copula approach to impute the missing potential compliance and estimate the principal quantile treatment effect surface at high quantiles, allowing the copula association parameter to vary with the covariates. A bootstrap procedure is used to estimate the parameter to account for inflation due to imputation of missing compliance. Moreover, we describe precise assumptions on which the proposed approach is based, and investigate the finite sample behavior of our method by a simulation study. The proposed approach is used to study the 90th principal quantile treatment effect of executive stay‐at‐home orders on mitigating the risk of COVID‐19 transmission in the United States.

Funder

Canada Research Chairs

Institut de Valorisation des Données

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3