Theoretical Understanding on the Facilitated Photoisomerization of a Carbonyl Supported Borane System

Author:

Zhu Hong‐Yang1,Li Quan‐Song1ORCID

Affiliation:

1. Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology 5 South Zhongguancun Street Beijing P. R. China

Abstract

AbstractBoron compound BOMes2 containing an internal B−O bond undergoes highly efficient photoisomerization, followed by sequential structural transformations, resulting in a rare eight‐membered B, O‐heterocycle (S. Wang, et al. Org. Lett. 2019, 21, 5285–5289). In this work, the detailed reaction mechanisms of such a unique carbonyl‐supported tetracoordinate boron system in the first excited singlet (S1) state and the ground (S0) state were investigated by using the complete active space self‐consistent field and its second‐order perturbation (MS‐CASPT2//CASSCF) method combined with time‐dependent density functional theory (TD‐DFT). Moreover, an imine‐substituted tetracoordinated organic boron system (BNMes2) was selected for comparative study to explore the intrinsic reasons for the difference in reactivity between the two types of compounds. Steric factor was found to influence the photoisomerization activity of BNMes2 and BOMes2. These results rationalize the experimental observations and can provide helpful insights into understanding the excited‐state dynamics of heteroatom‐doped tetracoordinate organoboron compounds, which facilitates the rational design of boron‐based materials with superior photoresponsive performances.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Physical and Theoretical Chemistry,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3