The Effect of Spin Relaxation on Magnetic Compass Sensitivity in ErCry4a

Author:

Grüning Gesa1,Gerhards Luca1,Wong Siu Y.1,Kattnig Daniel R.2,Solov'yov Ilia A.134

Affiliation:

1. Institute of Physics Carl von Ossietzky Universität Oldenburg Ammerländer Heerstr. 114–118 26129 Oldenburg Germany

2. Department of Physics and Living Systems Institute University of Exeter Stocker Road Exeter EX4 4QD United Kingdom

3. Research Center for Neurosensory Science Carl von Ossietzky University Oldenburg 26111 Oldenburg Germany

4. Center for Nanoscale Dynamics (CENAD) Carl von Ossietzky University Oldenburg Ammerländer Heerstr. 114–118 26129 Oldenburg Germany

Abstract

AbstractThis study explores the impact of thermal motion on the magnetic compass mechanism in migratory birds, focusing on the radical pair mechanism within cryptochrome photoreceptors. The coherence of radical pairs, crucial for magnetic field inference, is curbed by spin relaxation induced by intra‐protein motion. Molecular dynamics simulations, density‐functional‐theory‐based calculations, and spin dynamics calculations were employed, utilizing Bloch‐Redfield‐Wangsness (BRW) relaxation theory, to investigate compass sensitivity. Previous research hypothesized that European robin's cryptochrome 4a (ErCry4a) optimized intra‐protein motion to minimize spin relaxation, enhancing magnetic sensing compared to the plant Arabidopsis thaliana’s cryptochrome 1 (AtCry1). Different correlation times of the nuclear hyperfine coupling constants in AtCry1 and ErCry4a were indeed found, leading to distinct radical pair recombination yields in the two species, with ErCry4a showing optimized sensitivity. However, this optimization is likely negligible in realistic spin systems with numerous nuclear spins. Beyond insights in magnetic sensing, the study presents a detailed method employing molecular dynamics simulations to assess for spin relaxation effects on chemical reactions with realistically modelled protein motion, relevant for studying radical pair reactions at finite temperature.

Funder

Deutsche Forschungsgemeinschaft

Office of Naval Research

Engineering and Physical Sciences Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3