Enhanced Electrochemical Performance in Supercapacitors through KCu−Cy Based Metal‐Organic Framework Electrodes

Author:

Ferhi Najmeddine1,Essalhi Mohamed1,Zarrougui Ramzi2ORCID

Affiliation:

1. Département de Chimie Biochimie et physique and Institut de Recherche sur l'Hydrogène Université du Québec à Trois-Rivières Trois-Rivières Québec G9A 5H7 Canada

2. Laboratoire de Recherche sur les Matériaux Alternatifs et Valorisation des Ressources Département des sciences fondamentales Université du Québec à Chicoutimi 555 boulevard de l'Université Saguenay, Chicoutimi QC G7H 2B1 Canada

Abstract

AbstractIn the realm of electronics and electric energy storage, the convergence of organic and metallic materials has yielded promising outcomes. In this study, we introduce a novel metal‐organic polymer synthesized from Cyamelurate and copper (KCu−Cy) and explore its application as an electrode for a supercapacitor. This material was pressed onto a stainless‐steel grid as a thin film and synthesized on nickel foam. Comprehensive characterization was carried out to confirm the synthesis, ensure phase purity, and investigate atomic interactions. Single Crystal X‐ray Diffraction (SCXRD) and Powder X‐ray Diffraction (PXRD) analyses verified the synthesis and phase purity, shedding light on atomic arrangements. Fourier Transform Infrared Spectroscopy (FTIR) analyses provided insights into characteristic peaks within the material. Thermal Gravimetric Analysis (TGA) gauged stability and durability. Electrochemical performance was assessed through cyclic voltammetry. Notably, the nickel‐supported electrodes, devoid of binders, exhibited exceptional specific capacity, reaching 1210.89 F/g at a scan rate of 5 mV/s, in contrast to 363.73 F/g for the pressed thin film on the stainless‐steel grid, which incorporated a conductive agent and binder. Cu−Cy displayed impressive cyclization resistance, with a capacity retention of 90 % even after 11000 cycles. These findings underline the promise of Cu−Cy as a high‐performance electrode material for supercapacitors, particularly in binder‐free configurations, and suggest its potential in advanced energy storage applications.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3