Excited States Dynamics at Pentacene/Perfluoropentacene Interfaces: A Femtosecond Time‐Resolved Second Harmonic Generation Study

Author:

Sivanesan Vipilan1ORCID,Broch Katharina2ORCID,Tegeder Petra1ORCID

Affiliation:

1. Physikalisch-Chemisches Institut Universität Heidelberg 69120 Heidelberg Germany

2. Institut für Angewandte Physik Universität Tübingen 72076 Tübingen Germany

Abstract

AbstractUnderstanding the dynamics of excited states after optical excitation at donor‐acceptor (D/A) interfaces is of paramount importance for improving the efficiency and performance of optoelectronic devices. Here, we studied the ultrafast excited state dynamics after optical excitation at interfaces between the electron donor (D) pentacene (PEN) and the electron acceptor (A) perfuoropentacene (PFP) as well as within the single compounds (PEN and PFP) using femtosecond (fs) time‐resolved second harmonic generation (SHG). In the single compounds singlet fission is observed on a time scale of around 200 fs. In the bilayer systems a huge SHG intensity rise is observed due to the creation of charge transfer states at the interface and accordingly to formation of a local electric field within tens of picoseconds. The local electric field and therefore the SHG signal intensity from the interface of PEN/PFP bilayer is much more intense compared to the PFP/PEN system because the PFP and PEN intermixing at the PEN/PFP interface is higher. Accordingly a population of defect states on a time scale of 55±12 ps has been proposed for PEN/PFP. Our study provides important insights into D/A charge transfer properties, which is needed for the understanding of the interfacial photophysics of pentacene‐based organic compounds.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3