Disentangling the Conformational Space and Structural Preferences of Tetrahydrofurfuryl Alcohol Using Rotational Spectroscopy and Computational Chemistry

Author:

Silva Weslley G. D. P.1ORCID,van Wijngaarden Jennifer2

Affiliation:

1. I. Physikalisches Institut Universität zu Köln Zülpicher Str. 77 50937 Köln Germany

2. Department of Chemistry York University M3J 1P3 Toronto Ontario Canada

Abstract

AbstractThe influence of the hydroxymethyl (CH2OH) group on the tetrahydrofuran (THF) ring structure was investigated by disentangling the gas phase conformational landscape of the sugar analogue tetrahydrofurfuryl alcohol (THFA). By combining rotational spectroscopy (6–20 GHz) and quantum chemical calculations, transitions corresponding to two stable conformers of THFA and their 13C isotopologues were observed and assigned in the rotational spectrum. The positions of the C atoms were precisely determined to unambiguously distinguish between nearly isoenergetic pairs of conformers that differ in their ring configurations: envelope (E) versus twist (T). The rotational spectrum confirms that the E ring geometry is favoured when the CH2OH fragment lies gauche (−) to the THF backbone (OCCO ~−60°) whereas the T form is more stable for the gauche (+) alignment of the substituent (OCCO ~+60°). The observed spectral intensities suggest that conformational relaxation of the THF geometry (ET) to the more stable form readily occurs within the pairs of g− and g+ conformers which is consistent with the low barriers (1.5–1.7 kJ mol−1) for conversion determined via transition state calculations. Insights into the intramolecular hydrogen bonding and other weak interactions stabilizing the lowest energy structures of THFA were derived and rationalized using non‐covalent interaction analyses.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3