Affiliation:
1. University of Babylon Physics Babylon 6 51001 Hilla IRAQ
Abstract
Propagation of De Broglie waves through nanomolecular junctions is greatly affected by molecular topology changes, which in turn plays a key role in determining the electronic and thermoelectric properties of source│molecule│drain junctions. The probing and realization of the constructive quantum interference (CQI) and destructive quantum interference (DQI) are well established in this work. The critical role of quantum interference (QI) in governing and enhancing the transmission coefficient T(E), thermopower (S), power factor (P) and electronic figure of merit (ZelT) of porphyrin nanorings has been investigated, using a combination of density functional theory (DFT) methods, a tight binding (Hückel) modelling (TBHM) and quantum transport theory (QTT). Remarkably, DQI not only dominates the asymmetric molecular pathways and lowering T(E), but also improves the thermoelectric properties.
Subject
Physical and Theoretical Chemistry,Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献