On the Catalytic Performance of (ZrO)n (n=1–4) Clusters for CO Oxidation: A DFT Study

Author:

Ye Ya‐Ling1,Pan Kai‐Yun1,Wang Wen‐Lu1,Ni Bi‐Lian1,Sun Wei‐Ming12ORCID

Affiliation:

1. Department of Basic Chemistry The School of Pharmacy Fujian Medical University Fuzhou 350108 People's Republic of China

2. School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui 230026 People's Republic of China

Abstract

AbstractThe unique characteristic of superatoms to show chemical properties like those of individual atoms opens a new avenue towards replacing noble metals as catalysts. Given the similar electronic structures of the ZrO superatom and the Pd atom, the CO oxidation mechanisms catalysed by (ZrO)n (n=1–4) clusters were investigated in detail to evaluate their catalytic performance. Our results reveal that a single ZrO superatom exhibits superior catalytic ability in CO oxidation than both larger (ZrO)n (n=2–4) clusters and a Pd atom, indicating the promising potential of ZrO as a “single‐superatom catalyst”. Moreover, the mechanism of CO oxidation catalysed by ZrO+/− suggests that depositing a ZrO superatom onto the electron‐rich substrates is a better choice for practical catalysis application. Accordingly, a graphene nanosheet (coronene) was chosen as a representative substrate for ZrO and Pd to assess their catalytic performances in CO oxidation. Acting as an “electron sponge”, this carbon substrate can both donate and accept charges in different reaction steps, enabling the supported ZrO to achieve enhanced catalytic performance in this process with a low energy barrier of 19.63 kcal/mol. This paper presents a new realization on the catalytic performance of Pd‐like superatom in CO oxidation, which could increase the interests in exploring noble metal‐like superatoms as efficient catalysts for various reactions.

Funder

Natural Science Foundation of Fujian Province

National Natural Science Foundation of China

Publisher

Wiley

Subject

Physical and Theoretical Chemistry,Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3