A Comprehensive Computational Study on the Thermodynamics and Kinetics of Tetrahydrobiopterin Regeneration Process

Author:

Samanta Suvadip1,Mondal Padmabati12ORCID

Affiliation:

1. Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati India

2. Center for Atomic, Molecular and Optical Sciences and Technologies Indian Institute of Science Education and Research (IISER) Tirupati India

Abstract

AbstractOne of the most crucial enzymatic cofactors in the human body is tetrahydrobiopterin, which is acquired through biological synthesis and self‐regeneration. During this regenerative process, it undergoes oxidation, deprotonation, further oxidation, and subsequent deprotonation, resulting in the formation of quinonoid‐dihydrobiopterin, which then undergoes tautomerization to yield dihydrobiopterin. This study presents the thermodynamic and kinetic properties associated with each stage of the regeneration process using theoretical calculations. The redox potentials for oxidation steps and the pKa values for deprotonation steps are determined employing the Born‐Haber cycle and the direct change of free energy in implicit solvent models. The redox metabolites are characterized and confirmed from their calculated absorption spectra using the time‐dependent density functional theory method. For the tautomerization steps, an IRC calculation is executed, and rate constants are computed using Eyring's Transition State Theory (TST). The tunnelling probability of the H atom during the tautomerization process is incorporated using Wigner's tunnelling correction in the calculation of the rate constant. Notably, we identify the N3 atom as the most probable deprotonation site for H3B+ and predict its geometry based on our calculations. Furthermore, we elucidate the spectral properties of intermediates involved in the regeneration process, highlighting key electronic transitions responsible for their excitations. Our results indicate that each step of tautomerization occurs along vibrational bending modes. We have observed that these tautomerization processes have high activation energies by optimising transition states. Additionally, considering tunnelling correction can significantly affect the reaction rates associated with these processes. These results provide a comprehensive understanding of the thermodynamics and kinetics of the regeneration process of tetrahydrobiopterin, which will help in the modulation of its biological activity.

Funder

Science and Engineering Research Board

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3