Electronic Structure, Aromaticity and Optical Properties of Dehydro[10]annulene

Author:

Gai Xinwen1,Zhang Lei1,Wang Jingang1

Affiliation:

1. College of Science Liaoning Petrochemical University 1, West Section of Dandong Road, Wanghua District Fushun City P. R. China

Abstract

AbstractDehydro[10]annulene had been prepared experimentally recently, which is considered to be a highly rigid structure with planar configuration. In this paper, the electronic structure and bonding character of dehydro[10]annulene had been studied by means of molecular orbital (MO), density of states (DOS), bond order (BO) and interaction region indicator (IRI) analyses. The delocalization characters of out‐of‐plane and in‐plane π‐electrons (πout‐ and πin‐electrons) of the bond regions were studied by using localized orbital locator (LOL). The anisotropy of the induced current density (AICD), iso‐chemical shielding surface (ICSS) and anisotropy of the gauge‐including magnetically induced current (GIMIC) were used to investigate the molecular response to external magnetic field, including the induced ring current and the magnetic shielding characteristic. The results showed that the electron delocalization of dehydro[10]annulene is mainly contributed by πout system. The apparent clockwise current in the πout system proved that dehydro[10]annulene is πout aromatic. Finally, the photophysical properties and (hyper)polarizability of dehydro[10]annulene were studied by TD‐DFT calculation. The results showed that dehydro[10]annulene has strong local excitation characters. Its (hyper)polarizability decreases with the increase of frequency and has the characteristics of nonlinear anisotropy.

Funder

Natural Science Foundation of Liaoning Province

Publisher

Wiley

Subject

Physical and Theoretical Chemistry,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3