The Importance of Reaction Energy in Predicting Chemical Reaction Barriers with Machine Learning Models

Author:

Lalith Nithin1,Singh Aayush R.2ORCID,Gauthier Joseph A.1ORCID

Affiliation:

1. Department of Chemical Engineering Texas Tech University Lubbock TX 79409 USA

2. Dow Inc. Midland MI 48686 USA

Abstract

AbstractImproving our fundamental understanding of complex heterocatalytic processes increasingly relies on electronic structure simulations and microkinetic models based on calculated energy differences. In particular, calculation of activation barriers, usually achieved through compute‐intensive saddle point search routines, remains a serious bottleneck in understanding trends in catalytic activity for highly branched reaction networks. Although the well‐known Brønsted‐Evans‐Polyani (BEP) scaling – a one‐feature linear regression model – has been widely applied in such microkinetic models, they still rely on calculated reaction energies and may not generalize beyond a single facet on a single class of materials, e. g., a terrace sites on transition metals. For highly branched and energetically shallow reaction networks, such as electrochemical CO2 reduction or wastewater remediation, calculating even reaction energies on many surfaces can become computationally intractable due to the combinatorial explosion of states that must be considered. Here, we investigate the feasibility of activation barrier prediction without knowledge of the reaction energy using linear and nonlinear machine learning (ML) models trained on a new database of over 500 dehydrogenation activation barriers. We also find that inclusion of the reaction energy significantly improves both classes of ML models, but complex nonlinear models can achieve performance similar to the simplest BEP scaling when predicting activation barriers on new systems. Additionally, inclusion of the reaction energy significantly improves generalizability to new systems beyond the training set. Our results suggest that the reaction energy is a critical feature to consider when building models to predict activation barriers, indicating that efforts to reliably predict reaction energies through, e. g., the Open Catalyst Project and others, will be an important route to effective model development for more complex systems.

Funder

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3