Fluorine Substitution of TCNQ Alters the Redox‐Driven Catalytic Pathway for the Ferricyanide‐Thiosulfate Reaction

Author:

Alzubidi Anbrah E.1ORCID,Bond Alan M.1ORCID,Martin Lisandra L.1ORCID

Affiliation:

1. School of Chemistry Monash University 3800 Clayton Victoria Australia

Abstract

AbstractMechanistic variation in catalysis through substituent‐based redox tuning is well established. Fluorination of TCNQ (TCNQ=tetracyanoquinodimethane) provides ~850 mV variation in the redox potentials of the and (n=0, 2, 4) processes. With , catalysis of the kinetically very slow ferrocyanide‐thiosulfate redox reaction in aqueous solution occurs via a mechanism in which the catalyst is reduced to when reacting with which is oxidised to . Subsequently, reacts with to form and reform the catalyst, in another thermodynamically favoured process. An analogous mechanism applies with as a catalyst. In contrast, since the reaction of with is thermodynamically unfavourable, an alternative mechanism is required to explain the catalytic activity observed in this non‐fluorinated system. Here, upon addition of , reduction of to occurs with concomitant oxidation of to , which then acts as the catalyst for oxidation. Thermodynamic data explain the observed differences in the catalytic mechanisms. (n=0, 4) also act as catalysts for the ferricyanide‐thiosulfate reaction in aqueous solution. The present study shows that homogeneous pathways are available following addition of these dissolved materials. Previously, these (n=0, 4) coordination polymers have been regarded as insoluble in water and proposed as heterogeneous catalysts for the ferricyanide‐thiosulfate reaction. Details and mechanistic differences were established using UV‐visible spectrophotometry and cyclic voltammetry.

Funder

Australian Research Council

Publisher

Wiley

Subject

Physical and Theoretical Chemistry,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3