Infrared Laser Stark Spectroscopy of Methyl Fluoride in 4He Nanodroplets

Author:

Raston Paul L.12ORCID,Douberly Gary E.3ORCID

Affiliation:

1. Department of Chemistry University of Hawai‘i at Mānoa Honolulu HI 96822 United States

2. Department of Chemistry and Biochemistry James Madison University Harrisonburg VA 22807 United States

3. Department of Chemistry University of Georgia Athens GA 30602 United States

Abstract

AbstractWe measured the rotationally resolved infrared spectra of helium solvated methyl fluoride at 3 μm and 10 μm, wherein lies C−H and C−F stretching bands, respectively. The linewidths (FWHM) were found to increase with increasing vibrational energy and range from 0.002 cm−1 in the v3 band (C−F stretch) at ~1047 cm−1, to 0.65 cm−1 in the v4 band (asymmetric C−H stretch) at ~2997 cm−1. In between these two bands we observed the lower and upper components of the Fermi triad bands (ν1/2ν2/2ν5) at ~2859 and ~2961 cm−1. We carried out Stark spectroscopy on the lower band on account of its narrower linewidths (0.04 vs. 0.14 cm−1, respectively). The objective of performing Stark spectroscopy was to see if there is any evidence for a rotational linewidth dependence on the external field strength, due to a reduced difference in between methyl fluorides rotational energy gap and the roton‐gap of superfluid helium. We did not find any evidence for such an effect, which we largely attribute to the rotational energy gap not increasing significantly enough by the external field. We point to another molecule (formaldehyde) whose energy levels are predicted to show a more promising response to application of an external field.

Funder

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3