Ab initio Modeling of Hydrogen Bonding of Remdesivir and Adenosine with Uridine

Author:

Vishwakarma Kamini1,Ravi Satyam1,Mittal Sumit1ORCID

Affiliation:

1. School of Advance Science and Languages VIT Bhopal University Kothrikalan, Sehore Madhya Pradesh 466114 India

Abstract

AbstractRemdesivir (RDV) emerged as an effective drug against the SARS‐CoV‐2 virus pandemic. One of the crucial steps in the mechanism of action of RDV is its incorporation into the growing RNA strand. RDV, an adenosine analogue, forms Watson‐Crick (WC) type hydrogen bonds with uridine in the complementary strand and the strength of this interaction will control efficacy of RDV. While there is a plethora of structural and energetic information available about WC H‐bonds in natural base pairs, the interaction of RDV with uridine has not been studied yet at the atomic level. In this article, we aim to bridge this gap, to understand RDV and its hydrogen bonding interactions, by employing density functional theory (DFT) at the M06‐2X/cc‐pVDZ level. The interaction energy, QTAIM analysis, NBO and SAPT2 are performed for RDV, adenosine, and their complex with uridine to gain insights into the nature of hydrogen bonding. The computations show that RDV has similar geometry, energetic, molecular orbitals, and aromaticity as adenosine, suggesting that RDV is an effective adenosine analogue. The important geometrical parameters, such as bond distances and red‐shift in the stretching vibrational modes of adenosine, RDV and uridine identify two WC‐type H‐bonds. The relative strength of these two H‐bonds is computed using QTAIM parameters and the computed hydrogen bond energy. Finally, the SAPT2 study is performed at the minima and at non‐equilibrium base pair distances to understand the dominant intermolecular physical force. This study, based on a thorough analysis of a variety of computations, suggests that both adenosine and RDV have similar structure, energetic, and hydrogen bonding behaviour.

Publisher

Wiley

Subject

Physical and Theoretical Chemistry,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3