Electrostatic Fields Stimulate Absorption of Small Neutral Molecules in Gradient Polyelectrolyte Brushes

Author:

Smook Leon A.1,de Beer Sissi1

Affiliation:

1. Sustainable Polymer Chemistry Department of Molecules and Materials MESA+ Institute for Nanotechnology University of Twente The Netherlands

Abstract

AbstractMolecules can partition from a solution into a polymer coating, leading to a local enrichment. If one can control this enrichment via external stimuli, one can implement such coatings in novel separation technologies. Unfortunately, these coatings are often resource intensive as they require stimuli in the form changes of bulk solvent conditions such as acidity, temperature, or ionic strength. Electrically driven separation technology may provide an appealing alternative, as this will allow local, surface‐bound stimuli instead of system‐wide bulk stimuli to induce responsiveness. Therefore, we investigate via coarse grained molecular dynamics simulations the possibility of using coatings with charged moieties, specifically gradient polyelectrolyte brushes, to control the enrichment of the neutral target molecules near the surface with applied electric fields. We find that targets which interact more strongly with the brush show both more absorption and a larger modulation by electric fields. For the strongest interactions evaluated in this work, we obtained absorption changes of over 300 % between the collapsed and extended state of the coating.

Publisher

Wiley

Subject

Physical and Theoretical Chemistry,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3