Excited State Photophysics of Curcumin and its Modulation in Alkaline Non‐Aqueous Medium

Author:

Ghosh Meghna1,Parida Sanjukta1,Khatoon Huma1,Bera Nanigopal1,Mishra Sabyashachi1,Sarkar Nilmoni1ORCID

Affiliation:

1. Department of Chemistry Indian Institute of Technology Kharagpur 721302, WB India

Abstract

AbstractCurcumin, a well‐known medicinal pigment, has seen limited applications in biology despite having great potential as a therapeutic drug. Deprotonation is one of the possible ways to enhance solubility of curcumin in polar solvent. Here, we have explored the effect of deprotonation on the ultrafast dynamics of this biomolecule with the help of the time‐resolved fluorescence spectroscopic measurements using the femtosecond fluorescence upconversion technique. The excited state photophysics of fully deprotonated curcumin significantly differs from that of neutral curcumin. We have observed that the completely deprotonated curcumin not only has higher quantum yield, but also higher excited state lifetime and slower solvation dynamics in comparison to neutral curcumin. We propose solvation dynamics and intramolecular charge transfer as the excited state processes associated with the radiative decay of the completely deprotonated molecule, while ruling out the possibility of excited state proton exchange or proton transfer. Our results are well supported by time‐dependent density‐functional theory calculations. Lastly, we have also demonstrated the possibility of modulating the ultrafast dynamics of fully deprotonated curcumin using non‐aqueous alkaline binary solvent mixtures. We believe our results will provide significant physical insight towards unveiling the excited state dynamics of this molecule.

Publisher

Wiley

Subject

Physical and Theoretical Chemistry,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3