Transitions of Collective Motions Driven by Phase Resetting

Author:

Teng Rui1,Li Yang1,Ren Lin2,Ma Juan1,Epstein Irving R.3ORCID,Gao Qingyu1ORCID

Affiliation:

1. College of Chemical Engineering China University of Mining and Technology Xuzhou 221008 Jiangsu P. R. China

2. Department College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 Zhejiang P. R. China

3. Department of Chemistry and Volen Center for Complex Systems Brandeis University Waltham 02454-9110 Massachusetts U.S.A.

Abstract

AbstractAbrupt (i. e. step) environmental changes, such as natural disasters or the intervention of predators, can alter the internal dynamics of groups with active units, leading to the rapid destruction and/or restructuring of the group, with the emergence of new collective structures that endow the system with adaptability. Few studies, to date, have considered the influence of abrupt environmental changes on emergent behavior. Here, we use a model of active matter, the Belousov‐Zhabotinsky (BZ) self‐oscillating gel, to study the mechanism of formation and transition between modes of collective locomotion caused by changes of illumination intensity in arrays of interacting photosensitive active units. New forms of collective motion can be generated by step changes of illumination intensity. These transformations arise from the phase resetting and wave‐signal regeneration induced by the abrupt parameter variation, while gradual change results in different evolution of collective motion. Our results not only suggest a novel mechanism for emergence, but also imply that new collective behaviors could be accessible via discontinuous parameter changes.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

National Science Foundation

Publisher

Wiley

Subject

Physical and Theoretical Chemistry,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3