Affiliation:
1. College of Chemical Engineering China University of Mining and Technology Xuzhou 221008 Jiangsu P. R. China
2. Department College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 Zhejiang P. R. China
3. Department of Chemistry and Volen Center for Complex Systems Brandeis University Waltham 02454-9110 Massachusetts U.S.A.
Abstract
AbstractAbrupt (i. e. step) environmental changes, such as natural disasters or the intervention of predators, can alter the internal dynamics of groups with active units, leading to the rapid destruction and/or restructuring of the group, with the emergence of new collective structures that endow the system with adaptability. Few studies, to date, have considered the influence of abrupt environmental changes on emergent behavior. Here, we use a model of active matter, the Belousov‐Zhabotinsky (BZ) self‐oscillating gel, to study the mechanism of formation and transition between modes of collective locomotion caused by changes of illumination intensity in arrays of interacting photosensitive active units. New forms of collective motion can be generated by step changes of illumination intensity. These transformations arise from the phase resetting and wave‐signal regeneration induced by the abrupt parameter variation, while gradual change results in different evolution of collective motion. Our results not only suggest a novel mechanism for emergence, but also imply that new collective behaviors could be accessible via discontinuous parameter changes.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
National Science Foundation
Subject
Physical and Theoretical Chemistry,Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献