Shock‐Induced Microstructural Evolution, Phase Transformation, Sintering of Al‐Ni Dissimilar Nanoparticles: A Molecular Dynamics Study

Author:

Jiang Jun123,Sun Weifu123ORCID,Luo Ning45ORCID

Affiliation:

1. State Key Laboratory of Explosion Science and Technology Beijing Institute of Technology Beijing 100081 China

2. Beijing Institute of Technology Chongqing Innovation Center Chongqing 401120 China

3. Explosion Protection and Emergency Disposal Technology Engineering Research Center of the Ministry of Education Beijing 10081 China

4. School of Mechanics and Civil Engineering China University of Mining and Technology Xuzhou 221116 China

5. State Key Laboratory for Geomechanics & Deep Underground Engineering Xuzhou 221116 China

Abstract

AbstractMolecular dynamic simulations have been performed to explore contact behavior, microstructure evolution and sintering mechanism of Al−Ni dissimilar nanoparticles under high‐velocity impact. We confirmed that the simulated contact stress, contact radius, and contact force under low‐velocity impact are in good agreement with the predicted results of the Hertz model. However, with increasing the impact velocity, the simulated results gradually deviate from the predicted results of the Hertz model due to the elastic‐plastic transition and atomic discrete structure. The normalized contact radius versus strain exhibits a weak dependence on nanosphere diameter. Below a critical velocity, there are very few HCP atoms in the nanospheres after thermal equilibrium. There are two different sintering mechanisms: under low‐velocity impact, the sintering process relies mainly on the dislocation slip of Al nanospheres, while the dislocation slip of Ni nanospheres and the atomic diffusion of Al nanospheres predominate under high‐velocity impact.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Physical and Theoretical Chemistry,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3