Ab Initio Molecular Dynamics Study of H2 Dissociation Mechanisms on Cu13 and Defective Graphene‐supported Cu13 Clusters: Active Sites, Energy Barriers and Adsorption States

Author:

Li Yueru1,Wang Dunyou1ORCID

Affiliation:

1. College of Physics and Electronics Shandong Normal University Jinan 250014 Shandong China

Abstract

AbstractAb initio molecular dynamics calculations were performed to study H2 dissociation mechanisms on Cu13 and defective graphene‐supported Cu13 clusters. The study reveals that seven types of corresponding dissociation processes are found on the two clusters. The average dissociation energy barriers are 0.51 eV on the Cu13 cluster and 0.12 eV on the defective graphene‐supported Cu13 cluster, which are lowered by ~19 % and ~81 % compared with the pristine Cu(111) surface, respectively. Furthermore, compared with the pure Cu13 cluster, the average dissociation energy barrier on the defective graphene‐supported Cu13 cluster is substantially reduced by about 76 %. The preferred dissociation mechanisms on the two clusters are H2 located at a top‐bridge site with the barrier heights of 0.30 eV on the Cu13 cluster and −0.31 eV on the defective graphene‐supported Cu13 cluster. Analysis of the H−Cu bond interactions in the transition states shows that the antibonding‐orbital center shifts upward on the defective graphene‐supported Cu13 cluster compared with the one on the Cu13 cluster, which explains the reduction of the dissociation energy barrier. The average adsorption energy of dissociated H atoms is also greatly enhanced on the defective graphene‐supported Cu13 cluster, about twice that on the Cu13 cluster.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Physical and Theoretical Chemistry,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3