The Molecular Design and Electroluminescent Performance of Near‐Infrared (NIR) Iridium(III) Complexes Bearing Isoquinoline‐, Phthalazine‐ and Phenazine‐Based Ligands

Author:

Zhu Chengyun1,Liu Lina1,Yang Xiaolong1,Zhou Guijiang1,Sun Yuanhui1ORCID

Affiliation:

1. School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University Xi'an 710049 P. R. China

Abstract

AbstractNear‐infrared (NIR) light has characteristics of invisibility to human eyes, less background interference, low light scattering, and strong cell penetration. Therefore, NIR luminescent materials have significant applications in imaging, sensing, energy, information storage and display. The development of NIR luminescent materials thus has emerged as a highly dynamic area of research in the realm of contemporary materials. To date, NIR luminescent materials are roughly divided into inorganic materials and organic materials. Compared with inorganic materials, organic NIR luminescent materials have become a hot research topic in recent years due to their rich sources, easy control of structure, simple preparation process, low cost, and good film‐forming properties. Among them, iridium(III) [Ir(III)] complexes exhibit excellent properties such as thermal stability, simple synthesis, easy color modulation, short excited state lifetimes, and high brightness, thus becoming one of the ideal luminescent material systems for preparing high‐quality organic light‐emitting diodes. Therefore, how to obtain Ir(III) complexes with NIR emission and high efficiency through molecular design is a necessary and promising research topic. This work reviews the research progress of representative NIR Ir(III) complexes bearing isoquinoline‐, phenazine‐, and phthalazine‐based ligands reported in recent years and introduces the design strategies and electroluminescent performances of NIR Ir(III) complexes.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3