Prediction of Nucleophilicity and Electrophilicity Based on a Machine‐Learning Approach

Author:

Liu Yidi1,Yang Qi1,Cheng Junjie1,Zhang Long12,Luo Sanzhong12ORCID,Cheng Jin‐Pei12

Affiliation:

1. Center of Basic Molecular Science, Department of Chemistry Tsinghua University Beijing 100084 China

2. Haihe Laboratory of Sustainable Chemical Transformations Tianjin 3 00192 China

Abstract

AbstractNucleophilicity and electrophilicity dictate the reactivity of polar organic reactions. In the past decades, Mayr et al. established a quantitative scale for nucleophilicity (N) and electrophilicity (E), which proved to be a useful tool for the rationalization of chemical reactivity. In this study, a holistic prediction model was developed through a machine‐learning approach. rSPOC, an ensemble molecular representation with structural, physicochemical and solvent features, was developed for this purpose. With 1115 nucleophiles, 285 electrophiles, and 22 solvents, the dataset is currently the largest one for reactivity prediction. The rSPOC model trained with the Extra Trees algorithm showed high accuracy in predicting Mayr's N and E parameters with R2 of 0.92 and 0.93, MAE of 1.45 and 1.45, respectively. Furthermore, the practical applications of the model, for instance, nucleophilicity prediction of NADH, NADPH and a series of enamines showed potential in predicting molecules with unknown reactivity within seconds. An online prediction platform (http://isyn.luoszgroup.com/) was constructed based on the current model, which is available free to the scientific community.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Physical and Theoretical Chemistry,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction of 19F NMR chemical shift by machine learning;Artificial Intelligence Chemistry;2024-06

2. Nucleophilicity of 4‐(Alkylthio)‐3‐imidazoline Derived Enamines;Chemistry – A European Journal;2023-11-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3