Uncovering the Contributions of Charge Regulation to the Stability of Single Alpha Helices**

Author:

Fossat Martin J.1ORCID,Posey Ammon E.1ORCID,Pappu Rohit V.1ORCID

Affiliation:

1. Department of Biomedical Engineering and the Center for Biomolecular Condensates James McKelvey School of Engineering Washington University in St. Louis 63130 St. Louis MO USA

Abstract

AbstractThe single alpha helix (SAH) is a recurring motif in biology. The consensus sequence has a di‐block architecture that includes repeats of four consecutive glutamate residues followed by four consecutive lysine residues. Measurements show that the overall helicity of sequences with consensus E4K4 repeats is insensitive to a wide range of pH values. Here, we use the recently introduced q‐canonical ensemble, which allows us to decouple measurements of charge state and conformation, to explain the observed insensitivity of SAH helicity to pH. We couple the outputs from separate measurements of charge and conformation with atomistic simulations to derive residue‐specific quantifications of preferences for being in an alpha helix and for the ionizable residues to be charged vs. uncharged. We find a clear preference for accommodating uncharged Glu residues within internal positions of SAH‐forming sequences. The stabilities of alpha helical conformations increase with the number of E4K4 repeats and so do the numbers of accessible charge states that are compatible with forming conformations of high helical content. There is conformational buffering whereby charge state heterogeneity buffers against large‐scale conformational changes thus making the overall helicity insensitive to large changes in pH. Further, the results clearly argue against a single, rod‐like alpha helical conformation being the only or even dominant conformation in the ensembles of so‐called SAH sequences.

Funder

Air Force Office of Scientific Research

St. Jude Children's Research Hospital

Publisher

Wiley

Subject

Physical and Theoretical Chemistry,Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3