Relationship Between Stress Modulated Metallicity and Plasmon in Graphene Nanoribbons

Author:

Zhang Na1,Yang Zhiyuan1,Zhang Zhongyuan1,Wang Jingang1

Affiliation:

1. College of Science Liaoning Provincial Key Laboratory of Novel Micro-Nano Functional Materials Liaoning Petrochemical University Fushun 113001 China

Abstract

AbstractNanoscale quantum plasmon is an important technology that restricts the application of optics, electricity, and graphene photoelectric devices. Establishing a structure–effect relationship between the structure of graphene nanoribbons (GNRs) under stress regulation and the properties of plasmons is a key scientific issue for promoting the application of plasmons in micro‐nano photoelectric devices. In this study, zigzag graphene nanoribbon (Z‐GNR) and armchair graphene nanoribbon (A‐GNR) models of specific widths were constructed, and density functional theory (DFT) was used to study their lattice structure, energy band, absorption spectrum, and plasmon effects under different stresses. The results showed that the Z‐GNR band gap decreased with increasing stress, and the A‐GNR band gap changed periodically with increasing stress. The plasmon effects of the A‐GNRs and Z‐GNRs appeared in the visible region, whereas the absorption spectrum showed a redshift trend, indicating the range of the plasmon spectrum also underwent significant changes. This study provides a theoretical basis for the application of graphene nanoribbons in the field of optoelectronics under strain‐engineering conditions.

Funder

Natural Science Foundation of Liaoning Province

Publisher

Wiley

Subject

Physical and Theoretical Chemistry,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3