Affiliation:
1. Global Zero Emission Research Center National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
Abstract
AbstractCopper(I) thiocyanate (CuSCN) is one of the most robust hole‐transport materials for perovskite solar cells (PSCs). However, the power conversion efficiency of CuSCN‐based PSCs is low due to difficulty in crystallization of CuSCN. In this study, we focused on humidity conditions during the aging process of CuSCN‐based PSCs to improve their performance. PSCs aged in humid air, i. e., at a relative humidity of 70 %, exhibited better performance (efficiency; 10.6 %) than those aged in lower humidity (5.9 %) due to improved crystallinity of CuSCN layers. The results of the study provide insights into how to improve fabrication process of CuSCN‐based PSCs for higher stability and efficiency.
Subject
Physical and Theoretical Chemistry,Atomic and Molecular Physics, and Optics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献