Affiliation:
1. Department of Chemistry and Biochemistry Utah State University 84322-0300 Logan Utah USA
Abstract
AbstractAs a flat trigonal species, the CR3+ carbenium ion contains a pair of deep π‐holes above and below its molecular plane. In the case of CH3+ a first base will form a covalent bond with the central C, making the combined species tetrahedral. Approach of a second base to the opposite side results in a longer but rather strong noncovalent tetrel bond (TB). While CMe3+ can also form a similar asymmetric complex with a pair of bases, it also has the capacity to form a pair of nearly equivalent TBs, such that the resulting symmetric trigonal bipyramid configuration is only slightly higher in energy. When the three substituents on the central C are phenyl rings, the symmetric configuration with two TBs predominates. These tetrel bonds are quite strong, reaching up to 20 kcal/mol. Adding OPH2 or OCH substituents to the phenyl rings permits the formation of intramolecular C⋅⋅O TBs to the central C, very similar in many respects to the case where these TBs are intermolecular.
Funder
National Science Foundation