Intelligent element: Coupling Green function approach and artificial intelligence to reduce discretization effort

Author:

Peres Matheus L.1ORCID,Sotelino Elisa D.1ORCID,Mesquita Leonardo C.12ORCID

Affiliation:

1. Civil and Environmental Engineering Department Pontifical Catholic University of Rio de Janeiro Rio de Janeiro Brazil

2. Civil Engineering Department Federal University of Viçosa Viçosa Brazil

Abstract

AbstractThis research work presents a method that modifies a classical numerical method using artificial intelligence (AI) and takes advantage of an analytical method to minimize the usual need for increasing discretization. Its formulation is based on the integration of two main concepts: the reciprocity theorem and the generalization capability of artificial neural networks (ANNs). The reciprocity theorem is used to formulate the mathematical expression governing the geomechanical problem, which is then discretized in space into intelligent elements. The behavior of the strain field inside these new elements is predicted using an ANN. To make these predictions, the neural network uses displacement boundary conditions, material properties, and the geometric shape of the element as input data. The comparison was performed for two examples, in which the first had a uniform depletion of the reservoir, while the second had a non‐uniform variation of the pore pressure. For the same level of accuracy, the proposed method was 10 times faster than the traditional method for the first example and five times faster for the second example on a computer with 12 threads of 2.6 GHz and 32 GB RAM.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Wiley

Subject

Mechanics of Materials,Geotechnical Engineering and Engineering Geology,General Materials Science,Computational Mechanics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Non‐iterative Green's function approach for 2D unbounded heterogeneous fluid‐saturated media;International Journal for Numerical and Analytical Methods in Geomechanics;2023-06-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3