Synergistic regulation of hydrophobicity and basicity for copper hydroxide‐derived copper to promote the CO2 electroreduction reaction

Author:

Zhou Limin1,Li Chenghang1,Lv Jing‐Jing1ORCID,Wang Wei1,Zhu Shaojun1,Li Jun12,Yuan Yifei1ORCID,Wang Zheng‐Jun1,Zhang Qingcheng1,Jin Huile12ORCID,Wang Shun12ORCID

Affiliation:

1. Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering Wenzhou University Wenzhou Zhejiang China

2. Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies Wenzhou University Wenzhou Zhejiang China

Abstract

AbstractA simple method was proposed to activate alkaline Cu(OH)2 with an acidic ionomer, Nafion, to regulate its surface microenvironment, including hydrophobicity and local basicity. In particular, the direct complete neutralization reaction between Cu(OH)2 and Nafion in aqueous solution induces the exposing of vast anions which can exclude the in‐situ‐formed hydroxides and raise the local basicity. Remarkably, the optimal Nafion‐activated Cu(OH)2‐derived Cu can efficiently suppress the hydrogen evolution reaction (HER) and improve the selectivity for multi‐carbon products in the CO2 electroreduction reaction (eCO2RR). The H2 Faradaic efficiency (FE) decreased to 11% at a current density of 300 mA/cm2 (−0.76 V vs. RHE) in a flow cell, while the bare one with H2 had an FE of 40%. The total eCO2RR FE reaches as high as 83%, along with an evidently increased C2H4 FE of 44% as compared with the bare one (24%), and good stability (8000 s), surpassing that of most of the reported Cu(OH)2‐derived Cu. The experimental and theoretical results both show that the strong hydrophobicity and high local basicity jointly boosted the eCO2RR as acquired by felicitously introducing ionomer on the Cu(OH)2‐derived Cu surface.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Energy (miscellaneous),Materials Science (miscellaneous),Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3