Metal‐ and Photocatalyst‐Free Aerobic Photoinduced Benzyl C(sp3)−H Bonds Oxidation

Author:

Wang Peng1,Gao Wei2,Chen Maoqiang3,Ge Yuyang4,Ma Li2,Wang Ling2,Guo Bingpeng2,Zhao Zhengfeng2,Zhou Jianhua2,Tan Xuejie2,Li Yuehui5,Liu Zunqi1,Chen Jianbin2ORCID

Affiliation:

1. Chemistry and Chemical Engineering College Xinjiang Agricultural University Urumqi 830052 People's Republic of China

2. Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China.

3. Clinical Laboratory People's Hospital of Linshu county Linyi, Linshu 276799 People's Republic of China

4. School of Chemistry and Chemical Engineering Linyi University Linyi 276000 People's Republic of China

5. State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 People's Republic of China

Abstract

AbstractPhotoinduced the direct oxidation of benzyl C(sp3)−H bonds provides an attractive strategy for producing high‐value chemicals or intermediates. Unlike the conventional approaches that typically require transition‐metal catalysts, semiconductors, and organic photosensitizers as the photocatalysts, herein we report a bromine salt‐promoted photoinduced aerobic oxidation protocol for methylarenes. By applying NH4Br as both the bromine radical source and hydrogen atom transfer agent, photoinduced oxidation of methylarenes to the corresponding carboxylic products exhibits high conversion and selectivity. Furthermore, control experiments confirm that reactive oxygen species are proved to be essential for the success of this transformation. This strategy provides a metal‐/strong oxidant‐/photocatalyst‐free paradigm for the direct deep oxidation of methylarenes.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Jinan Science and Technology Bureau

Shandong Academy of Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3