Affiliation:
1. Department of Pharmacy Tianjin Medical University General Hospital Tianjin China
2. School of Mathematics Tianjin University Tianjin China
3. Department of Pharmacy Tianjin Huanhu Hospital Tianjin China
4. Department of Medical Oncology Tianjin Medical University General Hospital Tianjin China
5. Academy of Medical Engineering and Translational Medicine Tianjin University Tianjin China
Abstract
AbstractObjectiveThis study aims to develop a risk prediction model for chemotherapy‐induced nausea and vomiting (CINV) in cancer patients receiving highly emetogenic chemotherapy (HEC) and identify the variables that have the most significant impact on prediction.MethodsData from Tianjin Medical University General Hospital were collected and subjected to stepwise data preprocessing. Deep learning algorithms, including deep forest, and typical machine learning algorithms such as support vector machine (SVM), categorical boosting (CatBoost), random forest, decision tree, and neural network were used to develop the prediction model. After training the model and conducting hyperparameter optimization (HPO) through cross‐validation in the training set, the performance was evaluated using the test set. Shapley additive explanations (SHAP), partial dependence plot (PDP), and Local Interpretable Model‐Agnostic Explanations (LIME) techniques were employed to explain the optimal model. Model performance was assessed using AUC, F1 score, accuracy, specificity, sensitivity, and Brier score.ResultsThe deep forest model exhibited good discrimination, outperforming typical machine learning models, with an AUC of 0.850 (95%CI, 0.780–0.919), an F1 score of 0.757, an accuracy of 0.852, a specificity of 0.863, a sensitivity of 0.784, and a Brier score of 0.082. The top five important features in the model were creatinine clearance (Ccr), age, gender, anticipatory nausea and vomiting, and antiemetic regimen. Among these, Ccr had the most significant predictive value. The risk of CINV decreased with increased Ccr and age, while it was higher in the presence of anticipatory nausea and vomiting, female gender, and non‐standard antiemetic regimen.ConclusionThe deep forest model demonstrated good discrimination in predicting the risk of CINV in cancer patients prescribed HEC. Kidney function, as represented by Ccr, played a crucial role in the model's prediction. The clinical application of this predictive tool can help assess individual risks and improve patient care by proactively optimizing the use of antiemetics in cancer patients receiving HEC.
Funder
National Natural Science Foundation of China
Tianjin Municipal Science and Technology Committee
Subject
Cancer Research,Radiology, Nuclear Medicine and imaging,Oncology