MaxEnt brings comparable results when the input data are being completed; Model parameterization of four species distribution models

Author:

Ahmadi Mohsen1ORCID,Hemami Mahmoud‐Reza1,Kaboli Mohammad2ORCID,Shabani Farzin3

Affiliation:

1. Department of Natural Resources Isfahan University of Technology Isfahan Iran

2. Department of Environmental Sciences, Faculty of Natural Resources University of Tehran Karaj Iran

3. Department of Biological and Environmental Sciences College of Arts and Sciences, Qatar University Doha Qatar

Abstract

AbstractSpecies distribution models (SDMs) are practical tools to assess the habitat suitability of species with numerous applications in environmental management and conservation planning. The manipulation of the input data to deal with their spatial bias is one of the advantageous methods to enhance the performance of SDMs. However, the development of a model parameterization approach covering different SDMs to achieve well‐performing models has rarely been implemented. We integrated input data manipulation and model tuning for four commonly‐used SDMs: generalized linear model (GLM), gradient boosted model (GBM), random forest (RF), and maximum entropy (MaxEnt), and compared their predictive performance to model geographically imbalanced‐biased data of a rare species complex of mountain vipers. Models were tuned up based on a range of model‐specific parameters considering two background selection methods: random and background weighting schemes. The performance of the fine‐tuned models was assessed based on recently identified localities of the species. The results indicated that although the fine‐tuned version of all models shows great performance in predicting training data (AUC > 0.9 and TSS > 0.5), they produce different results in classifying out‐of‐bag data. The GBM and RF with higher sensitivity of training data showed more different performances. The GLM, despite having high predictive performance for test data, showed lower specificity. It was only the MaxEnt model that showed high predictive performance and comparable results for identifying test data in both random and background weighting procedures. Our results highlight that while GBM and RF are prone to overfitting training data and GLM over‐predict nonsampled areas MaxEnt is capable of producing results that are both predictable (extrapolative) and complex (interpolative). We discuss the assumptions of each model and conclude that MaxEnt could be considered as a practical method to cope with imbalanced‐biased data in species distribution modeling approaches.

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3