Affiliation:
1. State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou China
2. School of Chemical Engineering Northwest Minzu University Lanzhou China
Abstract
AbstractThe application of polymer composites is one of the most effective methods for preventing lubrication failure in deep‐sea engineering. In this study, fluorinated graphite (FGr) microsheets were incorporated into polytetrafluoroethylene (PTFE) microparticle‐filled poly(butylene terephthalate) (PBT) composites. The tribological performance in the simulated deep‐sea environment at elevated seawater pressure equivalent to 3000 m ocean depth was investigated. The results showed that FGr enhances the flexural and compressive strengths, thermal stability, and seawater resistance of the PTFE/PBT composite. The wear rate was decreased to 96% at the critical FGr content of 4% by improving the transfer onto the metallic counterfaces, preventing direct contact and shear between friction couples. Moreover, the seawater pressure impedes composite transfer, leading to a 29% increase in the wear rate.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China