USP7 inhibitors suppress tumour neoangiogenesis and promote synergy with immune checkpoint inhibitors by downregulating fibroblast VEGF

Author:

Jurisic Anamarija1,Sung Pei‐Ju1,Wappett Mark12,Daubriac Julien1,Lobb Ian T.1,Kung Wei‐Wei1,Crawford Nyree1,Page Natalie1,Cassidy Eamon1,Feutren‐Burton Stephanie1,Rountree J. S. Shane1,Helm Matthew D.1,O'Dowd Colin R.1,Kennedy Richard D.1,Gavory Gerald1,Cranston Aaron N.1,Longley Daniel B.12,Jacq Xavier1,Harrison Timothy1

Affiliation:

1. Almac Discovery Ltd., Health Science Building Belfast UK

2. Patrick G Johnston Centre for Cancer Research Queen's University Belfast Belfast UK

Abstract

AbstractBackgroundUnderstanding how to modulate the microenvironment of tumors that are resistant to immune checkpoint inhibitors represents a major challenge in oncology.Here we investigate the ability of USP7 inhibitors to reprogram the tumor microenvironment (TME) by inhibiting secretion of vascular endothelial growth factor (VEGF) from fibroblasts.MethodsTo understand the role played by USP7 in the TME, we systematically evaluated the effects of potent, selective USP7 inhibitors on co‐cultures comprising components of the TME, using human primary cells. We also evaluated the effects of USP7 inhibition on tumor growth inhibition in syngeneic models when dosed in combination with immune checkpoint inhibitors (ICIs).ResultsAbrogation of VEGF secretion from fibroblasts in response to USP7 inhibition resulted in inhibition of tumor neoangiogenesis and increased tumor recruitment of CD8‐positive T‐lymphocytes, leading to significantly improved sensitivity to immune checkpoint inhibitors. In syngeneic models, treatment with USP7 inhibitors led to striking tumor responses resulting in significantly improved survival.ConclusionsUSP7‐mediated reprograming of the TME is not linked to its previously characterized role in modulating MDM2 but does require p53 and UHRF1 in addition to the well‐characterized VEGF transcription factor, HIF‐1α. This represents a function of USP7 that is unique to fibroblasts, and which is not observed in cancer cells or other components of the TME. Given the potential for USP7 inhibitors to transform “immune desert” tumors into “immune responsive” tumors, this paves the way for a novel therapeutic strategy combining USP7 inhibitors with immune checkpoint inhibitors (ICIs).

Funder

Invest Northern Ireland

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3