Structured time‐dependent inverse regression (STIR)

Author:

Song Minsun1ORCID,Bura Efstathia2,Parzer Roman2ORCID,Pfeiffer Ruth M.3ORCID

Affiliation:

1. Department of Statistics and Research Institute of Natural Sciences Sookmyung Women's University Seoul Korea

2. Institute of Statistics and Mathematical Methods in Economics, Faculty of Mathematics and Geoinformation TU Wien Vienna Vienna Austria

3. Biostatistics Branch, Division of Cancer Epidemiology and Genetics National Cancer Institute Bethesda Maryland USA

Abstract

We propose and study structured time‐dependent inverse regression (STIR), a novel sufficient dimension reduction model, to analyze longitudinally measured, correlated biomarkers in relation to an outcome. The time structure is accommodated in an inverse regression model for the markers that can be applied both to equally and unequally spaced time points for each sample. The inverse regression structure also naturally accommodates retrospectively sampled markers, that is, markers measured in case‐control studies. We estimate the corresponding linear combinations of the markers, the reduction, using least squares. We show that under additional distributional assumptions the reduction contains sufficient information about the outcome. In extensive simulations the STIR linear combinations perform well in predictive models based on samples of realistic size. A Wald‐type test for association of a particular marker with outcome at any time point based on the STIR reduction has better power overall than assessing associations based on logistic or linear regression models that include all longitudinally measured markers as independent predictors. As illustrations we estimate the STIR reductions for a cohort study of diabetes and hyperlipidemia and a case‐control study of brain cancer with multiple longitudinally measured biomarkers. We assess the STIR reductions' predictive performance and identify outcome‐associated biomarkers.

Funder

National Research Foundation of Korea

Vienna Science and Technology Fund

Austrian Science Fund

Publisher

Wiley

Subject

Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3