GPU parallel processing to enable extensive criticality analysis in state estimation

Author:

Nishio Ayres1,Do Coutto Filho Milton B.1ORCID,Stachinni de Souza Julio C.12,Clua Esteban W. G.1

Affiliation:

1. Institute of Computing Fluminense Federal University Niterói Brazil

2. Department of Electrical Engineering Fluminense Federal University Niterói Brazil

Abstract

SummaryPower system monitoring relies on the reliability of state estimation (SE) results. SE plays a dominant role in data debugging if sufficient data is available. Criticality analysis (CA) integrates SE as a module in which measurements—taken one‐by‐one or in groups (tuples) of minimal cardinality—are designated crucial. The combinatorial nature of extensive CA (not restricted to identifying low‐cardinality critical tuples) characterizes its computational complexity and imposes challenging limits to go beyond. In simple terms, these limits are established by the number of measurements to be combined, the cardinality of tuples, and the computing time required to check the criticality condition. This paper proposes an innovative computational solution to expand CA limits found to date in the literature. A framework with multi‐threads designed cleverly on a graphics processing unit (GPU) parallel processing environment is built. The conceived architecture favors evaluating massive measurement combinations of diverse cardinality in extensive CA. Numerical results reveal significant speed‐ups with the proposed approach, contrasting with those reported in research efforts published so far.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Wiley

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3