Coherence of recurring fires and land use change in South America

Author:

Ren Shulin12ORCID,Xu Xiyan1,Jia Gensuo12,Huang Anqi3,Ma Wei4

Affiliation:

1. Key Laboratory of Regional Climate‐Environment for Temperate East Asia Institute of Atmospheric Physics, Chinese Academy of Sciences Beijing 100029 China

2. University of Chinese Academy of Sciences Beijing 100049 China

3. School of Geographical Sciences Nanjing University of Information Science and Technology Nanjing 210044 China

4. Beijing Meteorological Data Center Beijing 100089 China

Abstract

AbstractFire events in South America are becoming more extensive and frequent as climate extremes and human pressures increase, and even repeatedly occurring in some areas within decades. However, the relationship between recurring fires and vegetation dynamics remains unclear. Here, we extracted the number of fire occurrences using burned area satellite product and analysed the relationship between recurring fires and vegetation dynamics with remote sensing land use and vegetation index datasets in South America. We show that approximately 1.39 × 106 km2 of burnt area has experienced recurring fires during 2001–2020. More than half of burnt area of recurring fires occurred in savannahs with remaining burnt area in grasslands, forests and croplands. Although forests tended to be less susceptible to recurring fires among all vegetation types, their coverage loss with recurring fires was the greatest. The greater proportion of forest conversion to croplands concurred with more recurring fires. Conversely, the coverage of croplands and grasslands gained the most with recurring fires. In the areas without vegetation conversion, more frequent recurring fires further suppressed canopy greenness and density, even in fire‐adapted savannahs and grasslands. Our results suggest that recurring fires and land use change are generally coincident, reflecting the intense pressure of human activities on natural vegetation in South America. Thus, coordinated efforts on vegetation conservation and sustainable management of human‐induced burning in the region are urgently needed.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3