Biochemical characterization of patients with dihydrolipoamide dehydrogenase deficiency

Author:

Wongkittichote Parith12ORCID,Cuddapah Sanmati R.1,Master Stephen R.2,Grange Dorothy K.3,Dietzen Dennis4,Roper Stephen M.4,Ganetzky Rebecca D.12ORCID

Affiliation:

1. Division of Human Genetics Children's Hospital of Philadelphia Philadelphia Pennsylvania USA

2. Department of Pathology and Laboratory Medicine Children's Hospital of Philadelphia Philadelphia Pennsylvania USA

3. Division of Genetics and Genomic Medicine, Department of Pediatrics Washington University School of Medicine St. Louis Missouri USA

4. Department of Pathology & Immunology Washington University School of Medicine St. Louis Missouri USA

Abstract

AbstractDihydrolipoamide dehydrogenase (DLD; E3) oxidizes lipoic acid. Restoring the oxidized state allows lipoic acid to act as a necessary electron sink for the four mitochondrial keto‐acid dehydrogenases: pyruvate dehydrogenase, alpha‐ketoglutarate dehydrogenase, branched‐chain α‐keto‐acid dehydrogenase, and 2‐oxoadipate dehydrogenase. DLD deficiency (DLDD) is caused by biallelic pathogenic variants in DLD. Three major forms have been described: encephalopathic, hepatic, and myopathic, although DLDD patients exhibit overlapping phenotypes. Hyperlactatemia, hyperexcretion of tricarboxylic acid cycle (TCA) metabolites and branched‐chain keto acids, increased plasma branched‐chain amino acids and allo‐isoleucine are intermittent metabolic abnormalities reported in patients with DLDD. However, the diagnostic performance of these metabolites has never been studied. Therefore, we sought to systematically evaluate the diagnostic utility of these biomarkers for DLDD. We retrospectively analyzed the results of biochemical testing of six unrelated DLDD patients, including values obtained during both well visits and acute decompensation episodes. Elevation of branched‐chain amino acid concentrations was not consistently observed. We found that five of six patients in our cohort had a maximum lifetime value of allo‐isoleucine of 6 μmol/L, showing that alloisoleucine elevations even during illness may be subtle. Urine organic acid analysis (UOA) during acute decompensation episodes was abnormal in all cases; however, the pattern of abnormalities had high intersubject variability. No single biomarker was universally present, even in patients experiencing metabolic decompensation. We also observed novel biochemical associations: three patients had hyperexcretion of TCA cycle metabolites during crisis; in two patients, 2‐ketoadipic and 2‐hydroxyadipic acids, by products of lysine degradation, were detected. We propose that these result from 2‐oxoadipate dehydrogenase deficiency, an underappreciated biochemical abnormality in DLD. Given the diversity of biochemical profiles among the patients with DLDD, we conclude that accurate biochemical diagnosis relies on a high index of suspicion and multipronged biochemical analysis, including both plasma amino acid and urine organic acid quantitation during decompensation. Biochemical diagnosis during the well state is challenging. We emphasize the critical importance of multiple simultaneous biochemical tests for diagnosis and monitoring of DLDD. We also highlight the under‐recognized role of DLD in the lysine degradation pathway. Larger cohorts of patients are needed to establish a correlation between the biochemical pattern and clinical outcomes, as well as a genotype–phenotype correlation.

Publisher

Wiley

Subject

Biochemistry, Genetics and Molecular Biology (miscellaneous),Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3