Reducing transaction costs using intraday forecasts of limit order book slopes

Author:

Ahabchane Chahid1ORCID,Cenesizoglu Tolga2,Grass Gunnar2,Jena Sanjay Dominik3

Affiliation:

1. Department of Management Sciences Université du Québec en Abitibi‐Témiscamingue Rouyn‐Noranda Canada

2. HEC Montréal Montreal Canada

3. School of Management, Université du Québec à Montréal Montreal Canada

Abstract

AbstractMarket participants who need to trade a significant number of securities within a given period can face high transaction costs. In this paper, we document how improvements in intraday liquidity forecasts can help reduce total transaction costs. We compare various approaches for forecasting intraday transaction costs, including autoregressive and machine learning models, using comprehensive ultra‐high‐frequency limit order book data for a sample of NYSE stocks from 2002 to 2012. Our results indicate that improved liquidity forecasts can significantly decrease total transaction costs. Simple models capturing seasonality in market liquidity tend to outperform alternative models.

Funder

Federación Nacional de Cultivadores de Palma de Aceite

Publisher

Wiley

Reference30 articles.

1. Abadi M. Agarwal A. Barham P. Brevdo E. Chen Z. Citro C. Corrado G. S. Davis A. Dean J. Devin M. Ghemawat S. Goodfellow I. Harp A. Irving G. Isard M. Jia Y. Jozefowicz R. Kaiser L. Kudlur M. Levenberg J. Mané D. Monga R. Moore S. Murray D. Olah C. Schuster M. Shlens J. Steiner B. Sutskever I. Talwar K. Tucker P. Vanhoucke V. Vasudevan V. Viégas F. Vinyals O. Warden P. Wattenberg M. Wicke M. Yu Y. andZheng X.(2015).TensorFlow: Large‐scale machine learning on heterogeneous systems. Software available fromtensorflow.org.

2. Value under liquidation;Almgren R.;Risk,1999

3. Optimal execution of portfolio transactions

4. Adaptive arrival price;Almgren R.;Journal of Trading,2007

5. Performance of Institutional Trading Desks: An Analysis of Persistence in Trading Costs

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3