The interplay between terrestrial organic matter and benthic macrofauna: Framework, synthesis, and perspectives

Author:

Pardo J. C. F.12ORCID,Poste A. E.23,Frigstad H.12,Quintana C. O.45,Trannum H. C.12

Affiliation:

1. Centre for Coastal Research (CCR), Department of Natural Sciences University of Agder (UiA) Kristiansand Norway

2. Norwegian Institute for Water Research Oslo Norway

3. Department of Arctic and Marine Biology UiT–The Arctic University of Norway Tromsø Norway

4. Department of Biology University of Southern Denmark Odense M Denmark

5. SDU Climate Cluster, University of Southern Denmark Odense M Denmark

Abstract

AbstractEcosystems are shaped by physical, chemical, and biological drivers, which affect the quality and quantity of basal energy sources, with impacts that cascade to higher trophic levels. In coastal, shelf, and marine habitats, terrestrial‐derived organic matter (ter‐OM) can be a key driver of ecosystem structure and function. Climate change is expected to alter land–ocean connectivity in many regions, with a broad range of potential consequences for impacted ecosystems, particularly in the coastal zone. The benthic compartment is an important link between the large organic carbon pools stored on land and the marine environment. At the same time, the macrofauna plays a key role in the processing, biological uptake, and fate of ter‐OM in the aquatic environment, with implications for coastal ecosystem functioning, benthic–pelagic coupling, carbon burial, and biogeochemical cycles. However, information about relationships between land–ocean connectivity (including ter‐OM loads) and coastal benthic community responses remains spread across disciplines, and a broad perspective on the potential impacts of a changing climate is still missing. Here, we explore the interplay between benthic macrofaunal communities and ter‐OM through a paired narrative and research weaving analysis, which combines systematic mapping and bibliometric analysis. The review describes the past development and status of the research field as well as the lack of information in some geographical regions and habitats worldwide. We highlight the role of macrofauna in carbon cycling and the growing evidence that ter‐OM plays a key role in the structure and function of benthic communities, not strictly limited to estuarine habitats. Climate change poses challenges for the prediction of future ter‐OM fluxes and potential macrofauna responses to this additional stressor, thus requiring new methodological approaches (e.g., multimarker approaches for OM characterization) and long‐term monitoring programs across different habitats and spatiotemporal scales.

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3