Nontargeted metabolomics reveals sequential changes in amino acid and ferroptosis‐related metabolism in Parkinson's disease

Author:

Xu Delai1ORCID,Dai Jing1,Tang Liuxing1,Pan Jie1,Zhang Hua1

Affiliation:

1. Department of Pharmacy The Second Affiliated Hospital of Soochow University Suzhou China

Abstract

AbstractParkinson's disease (PD) is inseparable from metabolic disorders but lacks assessment of specific metabolite alteration. To explore the sequential metabolic changes in PD progression, we evenly divided 78 C57BL/6 mice (10 weeks) into six groups (one control group and five experimental groups) and collected the hippocampus tissue of mice after treating with 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine, and probenecid (twice a week) at five periods (1, 2, 3, 4, and 5 weeks) for metabolome analysis. Our study identified 567 differentially abundant metabolites (DAMs) (total 4348 metabolites). Compared with controls, 145, 146, 171, 208, and 213 DAMs were obtained from the five experimental groups, respectively. Notably, 40 shared DAMs were present in five experimental groups, of which 22 shared DAMs formed a new metabolic network based on amino acid metabolism. Compared with group W3, 84 DAMs were identified in group W5, including 12 unique DAMs. DAMs in different stages of PD were significantly enriched in amino acid metabolism pathway, lipid metabolism pathway, and ferroptosis pathway. l‐Glutamine, spermidine, and l‐tryptophan were the key hubs in the whole metabolic process of PD. N‐Formyl‐l‐methionine gradually increased in abundance with PD progression, whereas 5‐methylcytosine gradually decreased. The study emphasized the sequential changes in DAMs in PD progression, stimulating subsequent studies.

Funder

National Natural Science Foundation of China

Key Laboratory in Science and Technology Development Project of Suzhou

Publisher

Wiley

Subject

Clinical Biochemistry,Drug Discovery,Pharmacology,Molecular Biology,General Medicine,Biochemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3